Practical lithium–organic batteries enabled by an n-type conducting polymer
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).Article
ADS
CAS
PubMed
Google Scholar
Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).Article
CAS
PubMed
Google Scholar
Kim, J. et al. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).Article
ADS
Google Scholar
Dai, H., Guan, L., Mao, M. & Wang, C. J. Evaluating the present and future of organic batteries. Nat. Rev. Clean Technol. 1, 493–510 (2025).Article
Google Scholar
Li, M. et al. Electrolytes in organic batteries. Chem. Rev. 123, 1712–1773 (2023).Article
ADS
CAS
Google Scholar
Li, M. & Lu, J. Cobalt in lithium-ion batteries. Science 367, 979–980 (2020).Article
ADS
CAS
PubMed
Google Scholar
Deng, T. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3, 2550–2564 (2019).Article
CAS
Google Scholar
Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).Article
CAS
Google Scholar
Bai, S. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).Article
ADS
CAS
PubMed
Google Scholar
Li, M. et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 34, 2107226 (2022).Article
CAS
Google Scholar
Chen, Z. et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc. Natl Acad. Sci. USA 119, e2116775119 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Schön, T. B., McAllister, B. T., Li, P.-F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).Article
PubMed
Google Scholar
Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).Article
ADS
CAS
Google Scholar
Luo, C. et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30, 1706498 (2018).Article
Google Scholar
Sang, P., Chen, Q., Wang, D.-Y., Guo, W. & Fu, Y. Organosulfur materials for rechargeable batteries: structure, mechanism, and application. Chem. Rev. 123, 1262–1326 (2023).Article
CAS
Google Scholar
Xiong, P. et al. Thiourea-based polyimide/RGO composite cathode: a comprehensive study of storage mechanism with alkali metal ions. Sci. China Mater. 63, 1929–1938 (2020).Article
CAS
Google Scholar
Guo, J. et al. Revealing hydrogen bond effect in rechargeable aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 63, e202406465 (2024).Article
CAS
Google Scholar
Cong, G., Wang, W., Lai, N.-C., Liang, Z. & Lu, Y.-C. A high-rate and long-life organic-oxygen battery. Nat. Mater. 18, 390–396 (2019).Article
ADS
CAS
PubMed
Google Scholar
Chen, Z. et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204–2216 (2022).Article
CAS
Google Scholar
Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).Article
ADS
CAS
PubMed
Google Scholar
Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. & Nishide, H. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009).Article
CAS
Google Scholar
Li, Z. et al. A small molecular symmetric all-organic lithium-ion battery. Angew. Chem. Int. Ed. 61, e202207221 (2022).Article
ADS
CAS
Google Scholar
Zhao, C. et al. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries. Angew. Chem. Int. Ed. 59, 11992–11998 (2020).Article
CAS
Google Scholar
Yu, Z. et al. Redox-active donor-acceptor conjugated microporous polymer for high-voltage and high-rate symmetric all-organic lithium-ion battery. Mater. Today Energy 53, 101995 (2025).Article
CAS
Google Scholar
Song, Z. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).Article
CAS
Google Scholar
Deng, X. et al. Ultrafast charging of two-dimensional polymer cathodes enabled by cross-flow structure design. Nat. Chem. 17, 1546–1555 (2025).Article
CAS
PubMed
Google Scholar
Luo, L. et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Sci. China Chem. 64, 72–81 (2021).Article
CAS
Google Scholar
Kolek, M. et al. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 10, 2334–2341 (2017).Article
CAS
Google Scholar
Liang, Y. et al. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015).Article
ADS
CAS
PubMed
Google Scholar
Peng, C. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).Article
ADS
CAS
Google Scholar
Lu, D. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024).Article
ADS
CAS
PubMed
Google Scholar
Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).Article
ADS
CAS
PubMed
Google Scholar
Jin, Z. et al. Iterative synthesis of contorted macromolecular ladders for fast-charging and long-life lithium batteries. J. Am. Chem. Soc. 144, 13973–13980 (2022).Article
ADS
CAS
PubMed
Google Scholar
Qin, J. et al. A metal-free battery with pure ionic liquid electrolyte. iScience 15, 16–27 (2019).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ke, Z. et al. Controlled de-doping and redoping of n-doped poly(benzodifurandione) (n-PBDF). Adv. Funct. Mater. 34, 2400255 (2024).Article
CAS
Google Scholar
Li, Z. et al. Electrolyte design enables rechargeable LiFePO4/graphite batteries from −80 °C to 80 °C. Angew. Chem. Int. Ed. 64, e202409409 (2025).Article
CAS
Google Scholar
Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).Article
CAS
Google Scholar
Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).Article
ADS
CAS
PubMed
Google Scholar
Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).Article
CAS
Google Scholar
Liu, D. et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. Nat. Energy 9, 559–569 (2024).Article
ADS
Google Scholar
Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).Article
CAS
PubMed
Google Scholar
Tang, H. et al. Highly conductive alcohol-processable n-type conducting polymer enabled by finely tuned electrostatic interactions for green organic electronics. Angew. Chem. Int. Ed. 64, e202415349 (2025).Article
ADS
CAS
Google Scholar
Neese, F. Software update: the ORCA program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).Article
Google Scholar
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article
ADS
PubMed
Google Scholar
Wang, B. et al. Diffusion coefficients during regenerated cellulose fibers formation using ionic liquids as solvents: experimental investigation and molecular dynamics simulation. Chem. Eng. J. 488, 151175 (2024).Article
CAS
Google Scholar