Practical lithium–organic batteries enabled by an n-type conducting polymer

Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).Article  ADS  CAS  PubMed  Google Scholar  Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).Article  CAS  PubMed  Google Scholar  Kim, J. et al. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).Article  ADS  Google Scholar  Dai, H., Guan, L., Mao, M. & Wang, C. J. Evaluating the present and future of organic batteries. Nat. Rev. Clean Technol. 1, 493–510 (2025).Article  Google Scholar  Li, M. et al. Electrolytes in organic batteries. Chem. Rev. 123, 1712–1773 (2023).Article  ADS  CAS  Google Scholar  Li, M. & Lu, J. Cobalt in lithium-ion batteries. Science 367, 979–980 (2020).Article  ADS  CAS  PubMed  Google Scholar  Deng, T. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3, 2550–2564 (2019).Article  CAS  Google Scholar  Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).Article  CAS  Google Scholar  Bai, S. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).Article  ADS  CAS  PubMed  Google Scholar  Li, M. et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 34, 2107226 (2022).Article  CAS  Google Scholar  Chen, Z. et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc. Natl Acad. Sci. USA 119, e2116775119 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar  Schön, T. B., McAllister, B. T., Li, P.-F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).Article  PubMed  Google Scholar  Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).Article  ADS  CAS  Google Scholar  Luo, C. et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30, 1706498 (2018).Article  Google Scholar  Sang, P., Chen, Q., Wang, D.-Y., Guo, W. & Fu, Y. Organosulfur materials for rechargeable batteries: structure, mechanism, and application. Chem. Rev. 123, 1262–1326 (2023).Article  CAS  Google Scholar  Xiong, P. et al. Thiourea-based polyimide/RGO composite cathode: a comprehensive study of storage mechanism with alkali metal ions. Sci. China Mater. 63, 1929–1938 (2020).Article  CAS  Google Scholar  Guo, J. et al. Revealing hydrogen bond effect in rechargeable aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 63, e202406465 (2024).Article  CAS  Google Scholar  Cong, G., Wang, W., Lai, N.-C., Liang, Z. & Lu, Y.-C. A high-rate and long-life organic-oxygen battery. Nat. Mater. 18, 390–396 (2019).Article  ADS  CAS  PubMed  Google Scholar  Chen, Z. et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204–2216 (2022).Article  CAS  Google Scholar  Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).Article  ADS  CAS  PubMed  Google Scholar  Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. & Nishide, H. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009).Article  CAS  Google Scholar  Li, Z. et al. A small molecular symmetric all-organic lithium-ion battery. Angew. Chem. Int. Ed. 61, e202207221 (2022).Article  ADS  CAS  Google Scholar  Zhao, C. et al. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries. Angew. Chem. Int. Ed. 59, 11992–11998 (2020).Article  CAS  Google Scholar  Yu, Z. et al. Redox-active donor-acceptor conjugated microporous polymer for high-voltage and high-rate symmetric all-organic lithium-ion battery. Mater. Today Energy 53, 101995 (2025).Article  CAS  Google Scholar  Song, Z. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).Article  CAS  Google Scholar  Deng, X. et al. Ultrafast charging of two-dimensional polymer cathodes enabled by cross-flow structure design. Nat. Chem. 17, 1546–1555 (2025).Article  CAS  PubMed  Google Scholar  Luo, L. et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Sci. China Chem. 64, 72–81 (2021).Article  CAS  Google Scholar  Kolek, M. et al. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 10, 2334–2341 (2017).Article  CAS  Google Scholar  Liang, Y. et al. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015).Article  ADS  CAS  PubMed  Google Scholar  Peng, C. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).Article  ADS  CAS  Google Scholar  Lu, D. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024).Article  ADS  CAS  PubMed  Google Scholar  Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).Article  ADS  CAS  PubMed  Google Scholar  Jin, Z. et al. Iterative synthesis of contorted macromolecular ladders for fast-charging and long-life lithium batteries. J. Am. Chem. Soc. 144, 13973–13980 (2022).Article  ADS  CAS  PubMed  Google Scholar  Qin, J. et al. A metal-free battery with pure ionic liquid electrolyte. iScience 15, 16–27 (2019).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Ke, Z. et al. Controlled de-doping and redoping of n-doped poly(benzodifurandione) (n-PBDF). Adv. Funct. Mater. 34, 2400255 (2024).Article  CAS  Google Scholar  Li, Z. et al. Electrolyte design enables rechargeable LiFePO4/graphite batteries from −80 °C to 80 °C. Angew. Chem. Int. Ed. 64, e202409409 (2025).Article  CAS  Google Scholar  Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).Article  CAS  Google Scholar  Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).Article  ADS  CAS  PubMed  Google Scholar  Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).Article  CAS  Google Scholar  Liu, D. et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. Nat. Energy 9, 559–569 (2024).Article  ADS  Google Scholar  Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).Article  CAS  PubMed  Google Scholar  Tang, H. et al. Highly conductive alcohol-processable n-type conducting polymer enabled by finely tuned electrostatic interactions for green organic electronics. Angew. Chem. Int. Ed. 64, e202415349 (2025).Article  ADS  CAS  Google Scholar  Neese, F. Software update: the ORCA program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).Article  Google Scholar  Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article  ADS  PubMed  Google Scholar  Wang, B. et al. Diffusion coefficients during regenerated cellulose fibers formation using ionic liquids as solvents: experimental investigation and molecular dynamics simulation. Chem. Eng. J. 488, 151175 (2024).Article  CAS  Google Scholar 
AI Article