An electrically injected solid-state surface acoustic wave phonon laser
Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, 2010).Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation Vol. 116 (Springer, 2000).Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 820 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lu, X. et al. Harnessing exceptional points for ultrahigh sensitive acoustic wave sensing. Microsyst. Nanoeng. 11, 44 (2025).Article
ADS
PubMed
PubMed Central
Google Scholar
Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 11, 9216–9238 (2023).Article
ADS
CAS
Google Scholar
Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).Article
ADS
CAS
Google Scholar
Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Res. 9, 1182–1190 (2021).Article
CAS
Google Scholar
Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).Article
ADS
CAS
Google Scholar
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Qin, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 21, 3165–3173 (2021).Article
CAS
PubMed
Google Scholar
Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).Article
CAS
Google Scholar
Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).Article
ADS
CAS
PubMed
Google Scholar
Schütz, M. J. in Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment 143–196 (Springer, 2017).Zhou, Y. et al. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements. Nat. Commun. 15, 6796 (2024).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon fock states in a multimode cavity with a double-slit qubit. Phys. Rev. 9, 021056 (2019).Article
CAS
Google Scholar
Qiao, H. et al. Acoustic phonon phase gates with number-resolving phonon detection. Nat. Phys.21, 1801–1805 (2025).Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).Article
PubMed
PubMed Central
Google Scholar
Agostini, M. & Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 32, 312001 (2021).Article
ADS
CAS
Google Scholar
Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. X 14, 021002 (2024).CAS
Google Scholar
Freedman, J. M. et al. Gigahertz-frequency, acousto-optic phase modulation of visible light in a CMOS-fabricated photonic circuit. Preprint at https://doi.org/10.48550/arXiv.2502.08012 (2025).Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).Article
ADS
CAS
PubMed
Google Scholar
Lin Q. et al. Optical multi-beam steering and communication using integrated acousto-optics arrays. Nat. Commun. 16, 4501 (2025).Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).Article
ADS
Google Scholar
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).Article
ADS
CAS
PubMed
Google Scholar
Tucker, E. Amplification of 9.3-kmc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547 (1961).Article
ADS
Google Scholar
Fokker, P. A., Dijkhuis, J. I. & De Wijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925 (1997).Article
ADS
CAS
Google Scholar
Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).Article
CAS
Google Scholar
Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).Article
ADS
CAS
Google Scholar
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).Article
ADS
PubMed
Google Scholar
Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).Article
ADS
CAS
PubMed
Google Scholar
Chafatinos, D. L. et al. Polariton-driven phonon laser. Nat. Commun. 11, 4552 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Papuccio-Fernández, I. et al. Polariton cascade phonon laser. Preprint at https://doi.org/10.48550/arXiv.2505.17336 (2025).Ohtani, K. et al. An electrically pumped phonon-polariton laser. Sci. Adv. 5, eaau1632 (2019).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Okada, J. & Matino, H. Continuous oscillations of acoustoelectric current in CdS. Jpn. J. Appl. Phys. 3, 698 (1964).Article
ADS
CAS
Google Scholar
Maines, J. D. & Paige, E. G. S. Current-spiking and self-locking of modes of the acousto-electric oscillator. Solid State Commun. 8, 421–425 (1970).Article
ADS
CAS
Google Scholar
Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci. Rep. 4, 5617 (2014).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Mansoorzare, H. & Abdolvand, R. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities. In Proc. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1–3 (IEEE, 2019).Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023).
Google Scholar
Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).Article
ADS
CAS
PubMed
Google Scholar
Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kino, G. S. & Reeder, T. M. A normal mode theory for the Rayleigh wave amplifier. IEEE Trans. Electron Devices 18, 909–920 (1971).Article
ADS
Google Scholar
Pippard, A. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).Article
ADS
Google Scholar
Coldren, L. A. Monolithic Acoustic Surface Wave Amplifiers. PhD thesis, Stanford Univ. (1972).Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited acoustoelectric amplification in a piezoelectric-2DEG heterostructure. Preprint at http://arxiv.org/html/2510.09248v2 (2025).Danicki, E. Reversing multistrip coupler. Ultrasonics 31, 421–424 (1993).Article
Google Scholar
Keysight Technologies. Measuring phase noise with a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscilloscope-584447063.html (2025).Rhea, R. W. Oscillator Design & Computer Simulation (Prentice Hall, 1990).