An electrically injected solid-state surface acoustic wave phonon laser

Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, 2010).Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation Vol. 116 (Springer, 2000).Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 820 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Lu, X. et al. Harnessing exceptional points for ultrahigh sensitive acoustic wave sensing. Microsyst. Nanoeng. 11, 44 (2025).Article  ADS  PubMed  PubMed Central  Google Scholar  Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 11, 9216–9238 (2023).Article  ADS  CAS  Google Scholar  Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).Article  ADS  CAS  Google Scholar  Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Res. 9, 1182–1190 (2021).Article  CAS  Google Scholar  Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).Article  ADS  CAS  Google Scholar  Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Qin, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 21, 3165–3173 (2021).Article  CAS  PubMed  Google Scholar  Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).Article  CAS  Google Scholar  Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).Article  ADS  CAS  PubMed  Google Scholar  Schütz, M. J. in Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment 143–196 (Springer, 2017).Zhou, Y. et al. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements. Nat. Commun. 15, 6796 (2024).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon fock states in a multimode cavity with a double-slit qubit. Phys. Rev. 9, 021056 (2019).Article  CAS  Google Scholar  Qiao, H. et al. Acoustic phonon phase gates with number-resolving phonon detection. Nat. Phys.21, 1801–1805 (2025).Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).Article  PubMed  PubMed Central  Google Scholar  Agostini, M. & Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 32, 312001 (2021).Article  ADS  CAS  Google Scholar  Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. X 14, 021002 (2024).CAS  Google Scholar  Freedman, J. M. et al. Gigahertz-frequency, acousto-optic phase modulation of visible light in a CMOS-fabricated photonic circuit. Preprint at https://doi.org/10.48550/arXiv.2502.08012 (2025).Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).Article  ADS  CAS  PubMed  Google Scholar  Lin Q. et al. Optical multi-beam steering and communication using integrated acousto-optics arrays. Nat. Commun. 16, 4501 (2025).Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).Article  ADS  Google Scholar  Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).Article  ADS  CAS  PubMed  Google Scholar  Tucker, E. Amplification of 9.3-kmc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547 (1961).Article  ADS  Google Scholar  Fokker, P. A., Dijkhuis, J. I. & De Wijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925 (1997).Article  ADS  CAS  Google Scholar  Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).Article  CAS  Google Scholar  Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).Article  ADS  CAS  Google Scholar  Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).Article  ADS  PubMed  Google Scholar  Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).Article  ADS  CAS  PubMed  Google Scholar  Chafatinos, D. L. et al. Polariton-driven phonon laser. Nat. Commun. 11, 4552 (2020).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Papuccio-Fernández, I. et al. Polariton cascade phonon laser. Preprint at https://doi.org/10.48550/arXiv.2505.17336 (2025).Ohtani, K. et al. An electrically pumped phonon-polariton laser. Sci. Adv. 5, eaau1632 (2019).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Okada, J. & Matino, H. Continuous oscillations of acoustoelectric current in CdS. Jpn. J. Appl. Phys. 3, 698 (1964).Article  ADS  CAS  Google Scholar  Maines, J. D. & Paige, E. G. S. Current-spiking and self-locking of modes of the acousto-electric oscillator. Solid State Commun. 8, 421–425 (1970).Article  ADS  CAS  Google Scholar  Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci. Rep. 4, 5617 (2014).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Mansoorzare, H. & Abdolvand, R. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities. In Proc. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1–3 (IEEE, 2019).Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023). Google Scholar  Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).Article  ADS  CAS  PubMed  Google Scholar  Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Kino, G. S. & Reeder, T. M. A normal mode theory for the Rayleigh wave amplifier. IEEE Trans. Electron Devices 18, 909–920 (1971).Article  ADS  Google Scholar  Pippard, A. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).Article  ADS  Google Scholar  Coldren, L. A. Monolithic Acoustic Surface Wave Amplifiers. PhD thesis, Stanford Univ. (1972).Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited acoustoelectric amplification in a piezoelectric-2DEG heterostructure. Preprint at http://arxiv.org/html/2510.09248v2 (2025).Danicki, E. Reversing multistrip coupler. Ultrasonics 31, 421–424 (1993).Article  Google Scholar  Keysight Technologies. Measuring phase noise with a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscilloscope-584447063.html (2025).Rhea, R. W. Oscillator Design & Computer Simulation (Prentice Hall, 1990).
AI Article