Thalamocortical transcriptional gates coordinate memory stabilization
Yadav, N., Toader, A. & Rajasethupathy, P. Beyond hippocampus: thalamic and prefrontal contributions to an evolving memory. Neuron 112, 1045–1059 (2024).Article
CAS
PubMed
Google Scholar
Agranoff, B. W. & Klinger, P. D. Puromycin effect on memory fixation in the goldfish. Science 146, 952–953 (1964).Article
ADS
CAS
PubMed
Google Scholar
Flexner, L. B. & Flexner, J. B. Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice. Proc. Natl Acad. Sci. USA 55, 369–374 (1966).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Squire, L. R. & Barondes, S. H. Actinomycin-D: effects on memory at different times after training. Nature 225, 649–650 (1970).Article
ADS
CAS
PubMed
Google Scholar
Igaz, L. M., Vianna, M. R. M., Medina, J. H. & Izquierdo, I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J. Neurosci. 22, 6781–6789 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).Article
ADS
CAS
PubMed
Google Scholar
Dash, P. K., Hochner, B. & Kandel, E. R. Injection of the cAMP-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721 (1990).Article
ADS
CAS
PubMed
Google Scholar
Alberini, C. M., Ghirardi, M., Metz, R. & Kandel, E. R. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in aplysia. Cell 76, 1099–1114 (1994).Article
CAS
PubMed
Google Scholar
Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).Article
CAS
PubMed
Google Scholar
Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).Article
CAS
PubMed
Google Scholar
Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).Article
CAS
PubMed
Google Scholar
Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).Article
CAS
PubMed
Google Scholar
Bartsch, D., Casadio, A., Karl, K. A., Serodio, P. & Kandel, E. R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223 (1998).Article
CAS
PubMed
Google Scholar
Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).Article
CAS
PubMed
Google Scholar
Lin, H.-W., Chen, C.-C., de Belle, J. S., Tully, T. & Chiang, A.-S. CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proc. Natl Acad. Sci. USA 118, e2100624118 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Lamprecht, R. & LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54 (2004).Article
CAS
PubMed
Google Scholar
Carlezon, W. A. Jr, Duman, R. S. & Nestler, E. J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).Article
CAS
PubMed
Google Scholar
Kandel, E. R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 5, 14 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).Article
CAS
PubMed
Google Scholar
Alberini, C. M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51–56 (2005).Article
CAS
PubMed
Google Scholar
Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006).Article
CAS
PubMed
Google Scholar
Wood, M. A., Hawk, J. D. & Abel, T. Combinatorial chromatin modifications and memory storage: a code for memory? Learn. Mem. 13, 241–244 (2006).Article
CAS
PubMed
Google Scholar
Coda, D. M. & Gräff, J. From cellular to fear memory: an epigenetic toolbox to remember. Curr. Opin. Neurobiol. 84, 102829 (2024).Article
CAS
PubMed
Google Scholar
Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).Article
CAS
PubMed
Google Scholar
Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).Article
CAS
PubMed
Google Scholar
Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).Article
CAS
PubMed
Google Scholar
Toader, A. C. et al. Anteromedial thalamus gates the selection and stabilization of long-term memories. Cell 186, 1369–1381.e17 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Heumos, L. et al. Pertpy: an end-to-end framework for perturbation analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.08.04.606516 (2024).Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Weiler, P., Lange, M., Klein, M., Pe’er, D. & Theis, F. CellRank 2: unified fate mapping in multiview single-cell data. Nat. Methods 21, 1196–1205 (2024).Article
CAS
PubMed
PubMed Central
Google Scholar
Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S. dunce, A mutant of Drosophila deficient in learning. Proc. Natl Acad. Sci. USA 73, 1684–1688 (1976).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Davis, R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299–317 (1996).Article
CAS
PubMed
Google Scholar
Quinn, W. G., Sziber, P. P. & Booker, R. The Drosophila memory mutant amnesiac. Nature 277, 212–214 (1979).Article
ADS
CAS
PubMed
Google Scholar
Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).Article
CAS
PubMed
Google Scholar
Marco, A. et al. Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble. Nat. Neurosci. 23, 1606–1617 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Santoni, G. et al. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science 385, eadg9982 (2024).Article
CAS
PubMed
Google Scholar
Huentelman, M. J. et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum. Mol. Genet. 16, 1469–1477 (2007).Article
CAS
PubMed
Google Scholar
Teixeira, J. R., Szeto, R. A., Carvalho, V. M. A., Muotri, A. R. & Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 11, 19 (2021).Article
PubMed
PubMed Central
Google Scholar
Liu, H. et al. ASH1L mutation caused seizures and intellectual disability in twin sisters. J. Clin. Neurosci. 91, 69–74 (2021).Article
CAS
PubMed
Google Scholar
Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Stern, S., Kirst, C. & Bargmann, C. I. Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell 171, 1649–1662.e10 (2017).Article
CAS
PubMed
Google Scholar
Hergenreder, E. et al. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02031-z (2024).Article
PubMed
PubMed Central
Google Scholar
Campbell, R. R. & Wood, M. A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 20, 133–147 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Mews, P. et al. From circuits to chromatin: the emerging role of epigenetics in mental health. J. Neurosci. 41, 873–882 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).Article
CAS
PubMed
Google Scholar
Nott, A., Schlachetzki, J. C. M., Fixsen, B. R. & Glass, C. K. Nuclei isolation of multiple brain cell types for omics interrogation. Nat. Protoc. 16, 1629–1646 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article
PubMed
PubMed Central
Google Scholar
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).Article
PubMed
PubMed Central
Google Scholar
Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).Article
CAS
PubMed
Google Scholar
Glasner, A. et al. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. Nat. Immunol. 24, 1020–1035 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).Article
CAS
PubMed
Google Scholar
Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Yao, Z. et al. Whole mouse brain transcriptomic cell type atlas — 10x scRNAseq whole brain [dataset]. NeMO https://assets.nemoarchive.org/dat-qg7n1b0 (2023).