Detection of triboelectric discharges during dust events on Mars

Aplin, K. L. & Fischer, G. Lightning detection in planetary atmospheres. Weather 72, 46–50 (2017).Article  ADS  Google Scholar  Eden, H. F. & Vonnegut, B. Electrical breakdown caused by dust motion in low-pressure atmospheres: considerations for Mars. Science 180, 962–963 (1973).Article  ADS  CAS  PubMed  Google Scholar  Mills, A. A. Dust clouds and frictional generation of glow discharges on Mars. Nature 268, 614–614 (1977).Article  ADS  CAS  Google Scholar  Kahre, M. A. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 295–337 (Cambridge Univ. Press, 2017).Stow, C. D. Dust and sand storm electrification. Weather 24, 134–140 (1969).Article  ADS  Google Scholar  Farrell, W. M. et al. Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. Planets 109, E03004 (2004).Article  ADS  Google Scholar  Schmidt, D. S., Schmidt, R. A. & Dent, J. D. Electrostatic force on saltating sand. J. Geophys. Res. Atmos. 103, 8997–9001 (1998).Article  ADS  Google Scholar  Melnik, O. & Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 103, 29107–29117 (1998).Article  ADS  CAS  Google Scholar  Farrell, W. M., Delory, G. T., Cummer, S. A. & Marshall, J. R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30, 2050 (2003).Article  ADS  Google Scholar  Krauss, C. E., Horanyi, M. & Robertson, S. Modeling the formation of electrostatic discharges on Mars. J. Geophys. Res. Planets 111, E02001 (2006).Article  ADS  Google Scholar  Mimoun, D. et al. The Mars microphone onboard SuperCam. Space Sci. Rev. 219, 5 (2023).Article  ADS  Google Scholar  Maurice, S. et al. In situ recording of Mars soundscape. Nature 605, 653–658 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Renno, N. O. & Kok, J. F. Electrical activity and dust lifting on Earth, Mars, and beyond. Space Sci. Rev. 137, 419–434 (2008).Article  ADS  Google Scholar  Esposito, F. et al. The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43, 5501–5508 (2016).Article  ADS  Google Scholar  Atreya, S. K. et al. Oxidant enhancement in martian dust devils and storms: implications for life and habitability. Astrobiology 6, 439–450 (2006).Article  ADS  CAS  PubMed  Google Scholar  Delory, G. T. et al. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6, 451–462 (2006).Article  ADS  CAS  PubMed  Google Scholar  Renno, N. O. et al. MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. Planets 109, E07001 (2004).Article  ADS  Google Scholar  Riousset, J. A., Nag, A. & Palotai, C. Scaling of conventional breakdown threshold: impact for predictions of lightning and TLEs on Earth, Venus, and Mars. Icarus 338, 113506 (2020).Article  Google Scholar  Cimarelli, C. & Genareau, K. A review of volcanic electrification of the atmosphere and volcanic lightning. J. Volcanol. Geotherm. Res. 422, 107449 (2022).Article  CAS  Google Scholar  Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).Article  ADS  CAS  Google Scholar  Tkachenko, T. & Jacobi, H.-W. Electrical charging of snow and ice in polar regions and the potential impact on atmospheric chemistry. Environ. Sci. Atmos. 4, 144–163 (2024).Article  CAS  Google Scholar  Segura, A. & Navarro-González, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 32, L05203 (2005).Article  ADS  Google Scholar  Harrison, R. G. et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. 203, 299–345 (2016).Article  ADS  CAS  Google Scholar  Farrell, W. M. et al. Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015).Article  ADS  CAS  Google Scholar  Harper, J. M., Dufek, J. & McDonald, G. D. Detection of spark discharges in an agitated Mars dust simulant isolated from foreign surfaces. Icarus 357, 114268 (2021).Article  Google Scholar  Ruf, C. et al. Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36, L13202 (2009).Article  ADS  Google Scholar  Gurnett, D. A. et al. Non-detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophys. Res. Lett. 37, L17802 (2010).Article  ADS  Google Scholar  Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M. & Matijevic, J. R. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. J. Geophys. Res. Planets 104, 8747–8759 (1999).Article  ADS  Google Scholar  Chide, B. et al. An acoustic investigation of the near-surface turbulence on Mars. J. Acoust. Soc. Am. 155, 420–435 (2024).Article  ADS  CAS  PubMed  Google Scholar  Murdoch, N. et al. The sound of a Martian dust devil. Nat. Commun. 13, 7505 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Stott, A. E. et al. Wind and turbulence observations with the Mars microphone on Perseverance. J Geophys. Res. Planets 128, e2022JE007547 (2023).Article  ADS  Google Scholar  Wright, W. M. Propagation in air of N waves produced by sparks. J. Acoust. Soc. Am. 73, 1948–1955 (1983).Article  ADS  Google Scholar  Fotis, G. Electromagnetic fields radiated by electrostatic discharges: a review of the available approaches. Electronics 12, 2577 (2023).Article  Google Scholar  Jones, D. L. Intermediate strength blast wave. Phys. Fluids 11, 1664–1667 (1968).Article  ADS  Google Scholar  Liu, Q. & Zhang, Y. Shock wave generated by high-energy electric spark discharge. J. Appl. Phys. 116, 153302 (2014).Article  ADS  Google Scholar  Gillier, M. et al. Acoustic propagation in the near-surface Martian atmosphere. J. Geophys. Res. Planets 129, e2024JE008469 (2024).Article  ADS  Google Scholar  Rodriguez-Manfredi, J. A. et al. The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Sci. Rev. 217, 48 (2021).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Hueso, R. et al. Convective vortices and dust devils detected and characterized by Mars 2020. J. Geophys. Res. Planets 128, e2022JE007516 (2023).Article  ADS  Google Scholar  Franzese, G. et al. Electric properties of dust devils. Earth Planet. Sci. Lett. 493, 71–81 (2018).Article  ADS  CAS  Google Scholar  Lemmon, M. T. et al. Dust, sand, and winds within an active Martian storm in Jezero crater. Geophys. Res. Lett. 49, e2022GL100126 (2022).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Ordóñez-Etxeberria, I., Hueso, R. & Sánchez-Lavega, A. Strong increase in dust devil activity at Gale crater on the third year of the MSL mission and suppression during the 2018 Global Dust Storm. Icarus 347, 113814 (2020).Article  Google Scholar  Lefevre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).Article  ADS  CAS  PubMed  Google Scholar  Greeley, R. et al. Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. Planets 111, E12S09 (2006).ADS  Google Scholar  Lorenz, R. D. et al. The whirlwinds of Elysium: a catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars. Icarus 355, 114119 (2021).Article  Google Scholar  Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD): a comprehensive statistical study of dust storm sequences. Icarus 354, 114059 (2021).Article  Google Scholar  Bertrand, T. et al. Impact of the coagulation of dust particles on Mars during the 2018 global dust storm. Icarus 388, 115239 (2022).Article  Google Scholar  Wang, A., et al. Amorphization of S, Cl-salts induced by Martian dust activities. J. Geophys. Res. Planets 125, e2020JE006701 (2020).Article  ADS  CAS  Google Scholar  Wang, A. et al. Chlorine release from common chlorides by Martian dust activity. J. Geophys. Res. Planets 125, e2019JE006283 (2020).Article  ADS  CAS  Google Scholar  Korablev, O. et al. Transient HCl in the atmosphere of Mars. Sci. Adv. 7, eabe4386 (2021).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Wang, A. et al. Quantification of carbonates, oxychlorines, and chlorine generated by heterogeneous electrochemistry induced by Martian dust activity. Geophys. Res. Lett. 50, e2022GL102127 (2023).Article  ADS  CAS  Google Scholar  Marov, M. Y. & Huntress, W. T. Soviet Robots in the Solar System. Mission Technologies and Discoveries (Springer, 2011).Berthelier, J. J., Grard, R., Laakso, H. & Parrot, M. ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000).Article  ADS  Google Scholar  Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).Article  ADS  Google Scholar  Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 1–87 (2021).Article  ADS  Google Scholar  Chide, B. et al. Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta B At. Spectrosc. 153, 50–60 (2019).Article  CAS  Google Scholar  Chide, B. et al. Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophys. Res. Lett. 49, e2022GL100333 (2022).Article  ADS  Google Scholar  de Conti, A. & Visacro, S. Analytical representation of single- and double-peaked lightning current waveforms. IEEE Tran. Electromagn. Compat. 49, 448–451 (2007).Article  ADS  Google Scholar  Sánchez-Lavega, A. et al. Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from pressure measurements. J. Geophys. Res. Planets 128, e2022JE007480 (2023).Article  ADS  PubMed  PubMed Central  Google Scholar  Chen, Z. et al. Overpressure profile of LIBS blast on Mars. LPI Contribution No. 3040, id.1309 (2024).Chide, B. et al. Measurements of sound propagation in Mars’ lower atmosphere. Earth Planet. Sci. Lett. 615, 118200 (2023).Article  CAS  Google Scholar  Loeb, A. et al. Point explosion simulation by fast spark discharges. J. Appl. Phys. 57, 2501–2506 (1985).Article  ADS  Google Scholar  Bo, T. L., Zhang, H. & Zheng, X. J. Charge-to-mass ratio of saltating particles in wind-blown sand. Sci. Rep. 4, 5590 (2014).Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Di Renzo, M. & Urzay, J. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9, 1676 (2018).Article  ADS  PubMed  PubMed Central  Google Scholar  Lorenz, R. D. Triboelectric charging and brownout hazard evaluation for a planetary rotorcraft. In AIAA Aviation 2020 Forum https://doi.org/10.2514/6.2020-2837 (American Institute of Aeronautics and Astronautics, 2020).von Pidoll, U. Electrostatic charging of vehicles being driven and stopped. J. Electrostat. 92, 14–23 (2018).Article  Google Scholar  Cardnell, S. et al. A photochemical model of the dust-loaded ionosphere of Mars. J. Geophys. Res. Planets 121, 2335–2348 (2016).Article  ADS  CAS  Google Scholar  Lorenz, R. D. & Clarke, E. S. Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planet. Space Sci. 193, 105075 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar  Kim, W. et al. Charging assessment for sample tube exchange between Perseverance and MSR SRL. In Proc. 2024 IEEE Aerospace Conference (IEEE, 2024).Zent, A. P. et al. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. Planets 115, E00E14 (2010).Article  Google Scholar  Toledo, D. et al. Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). J. Geophys. Res. Planets 128, e2022JE007494 (2023).Article  ADS  Google Scholar  Guzewich, S. D., Toigo, A. D. & Wang, H. An investigation of dust storms observed with the Mars Color Imager. Icarus 289, 199–213 (2017).Article  ADS  Google Scholar  Rakov, V. A., & Uman, M. A. in Lightning. Physics and Effects 507–527 (Cambridge Univ. Press, 2003).Robledo-Martinez, A., Sobral, H. & Ruiz-Meza, A. Electrical discharges as a possible source of methane on Mars: lab simulation. Geophys. Res. Lett. 39, L17202 (2012).Article  ADS  Google Scholar 
AI Article