Detection of triboelectric discharges during dust events on Mars
Aplin, K. L. & Fischer, G. Lightning detection in planetary atmospheres. Weather 72, 46–50 (2017).Article
ADS
Google Scholar
Eden, H. F. & Vonnegut, B. Electrical breakdown caused by dust motion in low-pressure atmospheres: considerations for Mars. Science 180, 962–963 (1973).Article
ADS
CAS
PubMed
Google Scholar
Mills, A. A. Dust clouds and frictional generation of glow discharges on Mars. Nature 268, 614–614 (1977).Article
ADS
CAS
Google Scholar
Kahre, M. A. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 295–337 (Cambridge Univ. Press, 2017).Stow, C. D. Dust and sand storm electrification. Weather 24, 134–140 (1969).Article
ADS
Google Scholar
Farrell, W. M. et al. Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. Planets 109, E03004 (2004).Article
ADS
Google Scholar
Schmidt, D. S., Schmidt, R. A. & Dent, J. D. Electrostatic force on saltating sand. J. Geophys. Res. Atmos. 103, 8997–9001 (1998).Article
ADS
Google Scholar
Melnik, O. & Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 103, 29107–29117 (1998).Article
ADS
CAS
Google Scholar
Farrell, W. M., Delory, G. T., Cummer, S. A. & Marshall, J. R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30, 2050 (2003).Article
ADS
Google Scholar
Krauss, C. E., Horanyi, M. & Robertson, S. Modeling the formation of electrostatic discharges on Mars. J. Geophys. Res. Planets 111, E02001 (2006).Article
ADS
Google Scholar
Mimoun, D. et al. The Mars microphone onboard SuperCam. Space Sci. Rev. 219, 5 (2023).Article
ADS
Google Scholar
Maurice, S. et al. In situ recording of Mars soundscape. Nature 605, 653–658 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Renno, N. O. & Kok, J. F. Electrical activity and dust lifting on Earth, Mars, and beyond. Space Sci. Rev. 137, 419–434 (2008).Article
ADS
Google Scholar
Esposito, F. et al. The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43, 5501–5508 (2016).Article
ADS
Google Scholar
Atreya, S. K. et al. Oxidant enhancement in martian dust devils and storms: implications for life and habitability. Astrobiology 6, 439–450 (2006).Article
ADS
CAS
PubMed
Google Scholar
Delory, G. T. et al. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6, 451–462 (2006).Article
ADS
CAS
PubMed
Google Scholar
Renno, N. O. et al. MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. Planets 109, E07001 (2004).Article
ADS
Google Scholar
Riousset, J. A., Nag, A. & Palotai, C. Scaling of conventional breakdown threshold: impact for predictions of lightning and TLEs on Earth, Venus, and Mars. Icarus 338, 113506 (2020).Article
Google Scholar
Cimarelli, C. & Genareau, K. A review of volcanic electrification of the atmosphere and volcanic lightning. J. Volcanol. Geotherm. Res. 422, 107449 (2022).Article
CAS
Google Scholar
Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).Article
ADS
CAS
Google Scholar
Tkachenko, T. & Jacobi, H.-W. Electrical charging of snow and ice in polar regions and the potential impact on atmospheric chemistry. Environ. Sci. Atmos. 4, 144–163 (2024).Article
CAS
Google Scholar
Segura, A. & Navarro-González, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 32, L05203 (2005).Article
ADS
Google Scholar
Harrison, R. G. et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. 203, 299–345 (2016).Article
ADS
CAS
Google Scholar
Farrell, W. M. et al. Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015).Article
ADS
CAS
Google Scholar
Harper, J. M., Dufek, J. & McDonald, G. D. Detection of spark discharges in an agitated Mars dust simulant isolated from foreign surfaces. Icarus 357, 114268 (2021).Article
Google Scholar
Ruf, C. et al. Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36, L13202 (2009).Article
ADS
Google Scholar
Gurnett, D. A. et al. Non-detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophys. Res. Lett. 37, L17802 (2010).Article
ADS
Google Scholar
Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M. & Matijevic, J. R. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. J. Geophys. Res. Planets 104, 8747–8759 (1999).Article
ADS
Google Scholar
Chide, B. et al. An acoustic investigation of the near-surface turbulence on Mars. J. Acoust. Soc. Am. 155, 420–435 (2024).Article
ADS
CAS
PubMed
Google Scholar
Murdoch, N. et al. The sound of a Martian dust devil. Nat. Commun. 13, 7505 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Stott, A. E. et al. Wind and turbulence observations with the Mars microphone on Perseverance. J Geophys. Res. Planets 128, e2022JE007547 (2023).Article
ADS
Google Scholar
Wright, W. M. Propagation in air of N waves produced by sparks. J. Acoust. Soc. Am. 73, 1948–1955 (1983).Article
ADS
Google Scholar
Fotis, G. Electromagnetic fields radiated by electrostatic discharges: a review of the available approaches. Electronics 12, 2577 (2023).Article
Google Scholar
Jones, D. L. Intermediate strength blast wave. Phys. Fluids 11, 1664–1667 (1968).Article
ADS
Google Scholar
Liu, Q. & Zhang, Y. Shock wave generated by high-energy electric spark discharge. J. Appl. Phys. 116, 153302 (2014).Article
ADS
Google Scholar
Gillier, M. et al. Acoustic propagation in the near-surface Martian atmosphere. J. Geophys. Res. Planets 129, e2024JE008469 (2024).Article
ADS
Google Scholar
Rodriguez-Manfredi, J. A. et al. The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Sci. Rev. 217, 48 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hueso, R. et al. Convective vortices and dust devils detected and characterized by Mars 2020. J. Geophys. Res. Planets 128, e2022JE007516 (2023).Article
ADS
Google Scholar
Franzese, G. et al. Electric properties of dust devils. Earth Planet. Sci. Lett. 493, 71–81 (2018).Article
ADS
CAS
Google Scholar
Lemmon, M. T. et al. Dust, sand, and winds within an active Martian storm in Jezero crater. Geophys. Res. Lett. 49, e2022GL100126 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ordóñez-Etxeberria, I., Hueso, R. & Sánchez-Lavega, A. Strong increase in dust devil activity at Gale crater on the third year of the MSL mission and suppression during the 2018 Global Dust Storm. Icarus 347, 113814 (2020).Article
Google Scholar
Lefevre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).Article
ADS
CAS
PubMed
Google Scholar
Greeley, R. et al. Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. Planets 111, E12S09 (2006).ADS
Google Scholar
Lorenz, R. D. et al. The whirlwinds of Elysium: a catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars. Icarus 355, 114119 (2021).Article
Google Scholar
Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD): a comprehensive statistical study of dust storm sequences. Icarus 354, 114059 (2021).Article
Google Scholar
Bertrand, T. et al. Impact of the coagulation of dust particles on Mars during the 2018 global dust storm. Icarus 388, 115239 (2022).Article
Google Scholar
Wang, A., et al. Amorphization of S, Cl-salts induced by Martian dust activities. J. Geophys. Res. Planets 125, e2020JE006701 (2020).Article
ADS
CAS
Google Scholar
Wang, A. et al. Chlorine release from common chlorides by Martian dust activity. J. Geophys. Res. Planets 125, e2019JE006283 (2020).Article
ADS
CAS
Google Scholar
Korablev, O. et al. Transient HCl in the atmosphere of Mars. Sci. Adv. 7, eabe4386 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Wang, A. et al. Quantification of carbonates, oxychlorines, and chlorine generated by heterogeneous electrochemistry induced by Martian dust activity. Geophys. Res. Lett. 50, e2022GL102127 (2023).Article
ADS
CAS
Google Scholar
Marov, M. Y. & Huntress, W. T. Soviet Robots in the Solar System. Mission Technologies and Discoveries (Springer, 2011).Berthelier, J. J., Grard, R., Laakso, H. & Parrot, M. ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000).Article
ADS
Google Scholar
Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).Article
ADS
Google Scholar
Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 1–87 (2021).Article
ADS
Google Scholar
Chide, B. et al. Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology. Spectrochim. Acta B At. Spectrosc. 153, 50–60 (2019).Article
CAS
Google Scholar
Chide, B. et al. Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophys. Res. Lett. 49, e2022GL100333 (2022).Article
ADS
Google Scholar
de Conti, A. & Visacro, S. Analytical representation of single- and double-peaked lightning current waveforms. IEEE Tran. Electromagn. Compat. 49, 448–451 (2007).Article
ADS
Google Scholar
Sánchez-Lavega, A. et al. Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from pressure measurements. J. Geophys. Res. Planets 128, e2022JE007480 (2023).Article
ADS
PubMed
PubMed Central
Google Scholar
Chen, Z. et al. Overpressure profile of LIBS blast on Mars. LPI Contribution No. 3040, id.1309 (2024).Chide, B. et al. Measurements of sound propagation in Mars’ lower atmosphere. Earth Planet. Sci. Lett. 615, 118200 (2023).Article
CAS
Google Scholar
Loeb, A. et al. Point explosion simulation by fast spark discharges. J. Appl. Phys. 57, 2501–2506 (1985).Article
ADS
Google Scholar
Bo, T. L., Zhang, H. & Zheng, X. J. Charge-to-mass ratio of saltating particles in wind-blown sand. Sci. Rep. 4, 5590 (2014).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Di Renzo, M. & Urzay, J. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9, 1676 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Lorenz, R. D. Triboelectric charging and brownout hazard evaluation for a planetary rotorcraft. In AIAA Aviation 2020 Forum https://doi.org/10.2514/6.2020-2837 (American Institute of Aeronautics and Astronautics, 2020).von Pidoll, U. Electrostatic charging of vehicles being driven and stopped. J. Electrostat. 92, 14–23 (2018).Article
Google Scholar
Cardnell, S. et al. A photochemical model of the dust-loaded ionosphere of Mars. J. Geophys. Res. Planets 121, 2335–2348 (2016).Article
ADS
CAS
Google Scholar
Lorenz, R. D. & Clarke, E. S. Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planet. Space Sci. 193, 105075 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, W. et al. Charging assessment for sample tube exchange between Perseverance and MSR SRL. In Proc. 2024 IEEE Aerospace Conference (IEEE, 2024).Zent, A. P. et al. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. Planets 115, E00E14 (2010).Article
Google Scholar
Toledo, D. et al. Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). J. Geophys. Res. Planets 128, e2022JE007494 (2023).Article
ADS
Google Scholar
Guzewich, S. D., Toigo, A. D. & Wang, H. An investigation of dust storms observed with the Mars Color Imager. Icarus 289, 199–213 (2017).Article
ADS
Google Scholar
Rakov, V. A., & Uman, M. A. in Lightning. Physics and Effects 507–527 (Cambridge Univ. Press, 2003).Robledo-Martinez, A., Sobral, H. & Ruiz-Meza, A. Electrical discharges as a possible source of methane on Mars: lab simulation. Geophys. Res. Lett. 39, L17202 (2012).Article
ADS
Google Scholar